全球赢家4166(中国)有限公司

欢迎光临重庆侨峰金属加工厂官网!
不锈钢产品定制加工厂家侨峰不锈钢制造高新技术企业 欧盟标准
全国咨询热线:13996111618
当前位置: 主页 > 新闻资讯 > 公司动态

龙海不锈钢板规格表 0表

时间:2021-06-03 10:00:09 来源: 点击:

5T1TMJMZGZLHX龙海不锈钢板规格表龙海不锈钢的金相组织(2)

2.铁素体型龙海不锈钢

  铁素型龙海不锈钢在碳和氮的含量极少时,无论在高温下还是在室温下均为铁素体单相。当碳和氮的含量增加时就会在高温下生成r相,可通过回火处理析出碳化物和氮化物而变为铁素体单相。据有关资料介绍。在600-900℃回火时大部分碳和氮将析出。

  高铬铁素体型龙海不锈钢在经高温加热后会产生各种脆化现象。这些现象与其金属组织有关,如σ相脆化、475℃脆性和高温脆性。

  σ相脆化:在Fe-Cr二元系合金中,在铬含量为46at%-53at%的很窄范围内产生,是非磁性和硬的相。当铬含量大于25%和加热温度高于600℃时即可在较短时间内产生。当钢中含有硅、锰、镍和钼等元素时,其产生范围加宽。铬、硅和铝对σ相也有一定的影响。随铬的增加TTT曲线向短时间方向扩展。硅虽有明显的析出促进作用但铝却予以抑制。在冷加工中,可在很短时间内便产生σ相析出。一旦发生σ相脆化的钢,可加热至850-900℃使析出的σ相固溶,然后再进行急冷就可消除脆性和恢复韧性。

  475℃脆性:是将铁素体钢在400-500℃长时间加热时出现的脆化现象。475℃脆性产生与σ相脆化产生相比较,首先是产生温度范围不同,其次是475℃脆性较σ相脆化在更短的时间内产生。能够减轻475℃脆性的合金添加元素还没有发现。对发生475℃脆性的钢在600℃进行短时间处理即可消除脆性和恢复韧性。

  高温脆性:当高铬铁素体型不锈钢从900-1000℃的高温急冷时,随着晶粒的粗化和碳化物向晶界凝集发生明显脆化。铬含量越高,脆化的程度越大。破坏现象与475℃脆性相象。由于晶粒粗化,因此在进行深冲、弯曲等冷加工时表面易发生粗糙等缺陷。又因为晶界上析出碳化物因此晶间腐蚀敏感性增加。为避免该缺陷的产生同,需从高温缓冷至800℃左右,或650-800℃短时间的退火。

  3.奥氏体型不锈钢

  从Fe-Cr-Ni三元系平衡相图的分析中可知,当70%Fe等浓度断面中镍含量为10%时,该合金在800-1000℃下为r单相。具代表性的Cr18-Ni8钢由于存在碳、氮等奥氏体稳定化元素,因此室温下即为r单相。其中氮较碳有约两倍的固溶度,因而含氮量为0.1%-0.3%的高强度不锈钢己得到了应用。

  目前己明确碳、氮、钴、锰和铜等元素是奥氏体稳定化元素,铝、钒、钼、硅和钨等元素是铁素体稳定化元素。

  作为固相内的平衡相,除α相、r相以外还有金属间化合物σ相。碳、氮和镍等奥氏体稳定化元素抑制σ相的生成,但锰与钼、硅、钛、铌、锆、钒和铝等铁素体稳定化元素促进σ相的生成。除此以外在奥氏体型不锈钢中由于添加不同的元素,还有可能生成拉弗斯(Laves)相或x相等金属间化合物。其析出的反应是随合金组成、时效温度及制造合金时的加工和热处理条件来决定的,是一个非常复杂的变化。

  在钢中添加铬、镍、锰、碳和氮等元素时,马氏体相变初始温度Ms几乎与这些合金元素的添加成比例降低,在常温下也可保持r相。奥氏体不锈钢就是其具代表性的合金之一。

  虽说为使奥体型不锈钢的r相稳定添加了大量的锰或镍,但实际上r相往往并非稳定而是处于亚稳定态。从热力学角度来看可以说α相到是稳定的。一般称这些奥氏体相为亚稳定奥氏体相。当对亚稳定奥氏体相冷却至极低温或室温下进行加工时,其中的部分或全部亚稳定奥氏体相将发生马氏体相变。

  通过对奥氏体型不锈钢进行冷却或加工得到的马氏体中除有α’相外还有ε相。该相具有hcp结构.且有0.7%左右的收缩,是非磁性的,容易发生加工诱发相变。ε相是当Cr:Ni为5:3且Cr+Ni定为24%时生成的。由于面心立方结构的(111)面的每两个原子面上发生堆垛缺陷时将成为ε马氏体结构,因此ε相的生成和堆垛缺陷有着密切的关系。

  奥氏体型不锈钢的马氏体相变中一个重要的问题是,一旦发生马氏体相变后经再加热进行恢复的问题。对于Cr18-Ni8钢主要发生扩散型的逆相变,而象Cr16-Ni10钢则发生剪切的逆相变。后者的铬含量较前者低,镍含量较前者高。

  从金相组织上来看,奥氏体型不锈钢是相对稳定的,其中碳化物的析出与其耐蚀性能、高温强度以及韧性等主要性能密切相关。在通常作为固溶热处理温度1000℃附近,碳的固溶量可达到最高,但当温度低于800℃时固溶量急剧下降而产生碳化物。所以进行固溶化处理或焊接后如果冷却速度过慢,在晶界上会产生碳化物,成为晶间腐蚀的原因。钢中的碳有活性随镍含量的增加而增加,随铬含量的增加而减少。也就是说镍的增加使碳的固溶量减少,铬的增加使碳的固溶量增加。另外在晶界还析出铬碳化物,合金添加元素有时也生成相应的碳化物。

常年销售龙海不锈钢板规格表

TDDTWC27K0EO4龙海不锈钢板规格表龙海钢的氮化及碳氮共渗

 龙海钢的氮化(气体氮化):氮化是向钢的表面层渗入氮原子的过程,其目的是提高表面硬度和耐磨性,以及提高疲劳强度和抗腐蚀性。

  它是利用氨气在加热时分解出活性氮原子,被钢吸收后在其表面形成氮化层,同时向心部扩散。

  氮化通常利用专门设备或井式渗碳炉来进行。适用于各种高速传动精密齿轮、机床主轴(如镗杆、磨床主轴),高速柴油机曲轴、阀门等。

  氮化工件工艺路线:锻造-退火-粗加工-调质-精加工-除应力-粗磨-氮化-精磨或研磨。

  由于氮化层薄,并且较脆,因此要求有较高强度的心部组织,所以要先进行调质热处理,获得回火索氏体,提高心部机械性能和氮化层质量。

  龙海钢在氮化后,不再需要进行淬火便具有很高的表面硬度大于HV850)及耐磨性。

  氮化处理温度低,变形很小,它与渗碳、感应表面淬火相比,变形小得多。

#p#分页标题#e#

 龙海钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程,习惯上碳氮共渗又称作氰化。目前以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较是广。中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度,低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。

提供及时的龙海不锈钢板规格表

XQLSOQW7TK4LR龙海不锈钢板规格表工业配管用龙海不锈钢钢管
执行标准:ASTM A312   ASTM A778   GB/T12771  
材质:进口一级正材龙海304   龙海304L   龙海316   龙海316L
规格:φ13.72~φ1000mm,产品用于: 化工、石化、水处理、造纸、食品卫生等设备的配管一流产品,专业服务龙海不锈钢板规格表

不锈钢非标定制

在线客服
联系方式

热线电话

13996111618

上班时间

周一到周五

公司电话

13996111618

二维码
线
Baidu
sogou